

IMAGE SENSOR TECHNOLOGY UPDATE

CMOS Sensor Technology

FEBRUARY 26, 2018

What is next in CMOS Sensor Technology?

- On-Sensor Polarization
- Curved CMOS Sensors
- Stacked CMOS Sensors
- QuantumFilmTM
- Organic Photoconductive Film sensors
- 3rd Generation Sony Pregius

What is next in CMOS Sensor Technology?

- On-Sensor Polarization
- Curved CMOS Sensors
- Stacked CMOS Sensors
- QuantumFilmTM
- Organic Photoconductive Film sensors
- 3rd Generation Sony Pregius

Polarization of Light

- Light is an electromagnetic wave with oscillating electric and magnetic fields.
- Unpolarized light: light waves whose electric field vectors are randomly oriented w.r.t the direction of propagation
- Polarized light: light waves whose electric field vectors are restricted to a single plane w.r.t the direction of propagation
- Most light sources emit unpolarized light

Polarization in Nature - Navigating

- Bees use the sun to navigate
- Sensing polarized light enables bees to sense the position of the sun on cloudy days

Light can be polarized by reflection

- Reflection is one way of polarizing light waves
- · The magnitude of this effect depends on the material and angle of incidence of light
- Metals reflect the polarization of the light falling on them and hence there is minimal polarization.
- Non-metallic materials tend to reflect most vibrations on a single plane parallel to the plane of incidence.

Polarization in Nature - Hunting

- Predators use polarized light in different ways to help them hunt
- Cuttlefish and mantis shrimps are sensitive to polarized light which helps them hunt silvery fish
- Diving birds' eyes block polarized light reflecting off water, enabling them to see below surface of the water more clearly

Polarization in Nature - Hiding

 Some fish have evolved scales capable of reflecting unpolarized light helping them avoid detection by predators using polarized light

Simulation from Cummings Lab

Light can be polarized with filters

- Polarizing filters pass light which is aligned with their angle of polarization
- Polarizing filters block light which is not aligned with their angle of polarization

Common applications of polarized light

- Sunglasses are common use of polarizing filters
 - Their polarizers are aligned to block polarized light reflecting off horizontal surfaces
 - Passing or blocking different angles requires the filters to be rotated

Rotating polarizing filters

- Rotating a polarized filter changes the amount of plane polarized light the filter blocks or passes
- The transition is smooth and predictable
- The relationship between the maximum and minimum amount of polarized light is called the extinction ratio

IMX250MZR has on-sensor filters

- Sensor based on the popular IMX250
 - 3.45µm pixel
 - Global shutter
 - Low read noise
- Each pixel has its own polarizing filter/array placed on-chip

Micrograph of polarization grid

Proprietary - Company Confidential ©2018 FLIR Systems Inc. Information and equipment described herein may require US Government authorization for export purposes. Diversion contrary to US law is prohibited.

Effect on imaging performance

- Placing a polarizer in-front of the photodiode reduces the quantum efficiency of the sensor
- Sony Pregius sensors feature low read noise enabling high gain without a significant noise penalty

Greyscale values are tightly correlated to angle of polarization

Rotating a plane polarized light source results in a predictable change in pixel gray values

Degree of Linear Polarization

- The Degree of Linear Polarization (DoLP) is the amount of light which is polarized at a particular point in the image.
- This information can be used to identify reflections by identifying regions with a high degree of linear polarization

Angle of Linear Polarization

• The Angle of Linear Polarization (AoLP) is the average polarization angle at a given pixel in the image

Stokes Parameter

Interpolation of Polarized images

- When the sensitives of adjacent pixels to wavelengths or polarization angles differs, demosaicing is used to generate a full resolution image
- The goal is to preserve the highest spatial resolution and minimize artifacts of the interpolation process

Interpolation of monochrome images

 Interpolation between the four pixels of different polarization angles is very similar to RGB demosaicing

On-sensor polarization replaces mechanical solutions

- Capturing multiple angles of polarization in a single image eliminates the mechanical and software complexity of working with filter wheels
 - Reduce mass
 - Reduce power consumption
 - Reduce system complexity
 - Reduce development time
 - Increase system throughput

Applications

FLIR Blackfly S with IMX250MZ

- BFS-U3-51S5P coming Q3, 2018
- 29 mm x 29 mm footprint with an "ice cube" form factor
- 3.5W
- 75FPS on USB 3.1 Gen 1 Interface
- Spinnaker SDK supports demosaicing, and DoLP and AoLP measurements

References

- Brady, Parrish C., et al. "Open-ocean fish reveal an omnidirectional solution to camouflage in polarized environments." *Science* 350.6263 (2015): 965-969.
- Kunnen, Britt, et al. "Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media." *Journal of biophotonics* 8.4 (2015): 317-323.
- Kadambi, Achuta, et al. "Polarized 3d: High-quality depth sensing with polarization cues." *Proceedings of the IEEE International Conference on Computer Vision*. 2015.

What is next in CMOS Sensor Technology?

- On-Sensor Polarization
- Curved CMOS Sensors
- Stacked CMOS Sensors
- Organic Photoconductive Film sensors
- Quantumfilm
- 3rd Generation Sony Pregius

Curved CMOS sensors

- Curved sensors enable more compact and less expensive optics
- Eliminating the need to lens elements to flatten the image
- Fabrication is difficult the process requires thin silicon wafers to be bent without cracking
- Microsoft, Nikon, Canon and Sony all have curved sensor patents and have demonstrated devices

Curved CMOS reduces Chief Ray Angles

• Improve performance of sensor towards the edges by minimizing falloff caused by high Chief Ray Angles (CRA)

What is next in CMOS Sensor Technology?

- On-Sensor Polarization
- Curved CMOS Sensors
- Stacked CMOS Sensors
- QuantumFilmTM
- Organic Photoconductive Film sensors
- 3rd Generation Sony Pregius

Stacked CMOS

Stacked CMOS adds layer of DRAM between the sensor and the output circuitry

Stacked CMOS

- Building an image sensor directly on top of DRAM memory enables high speed readout
- Image data can be transferred to on-senor memory
- Image data can be transferred off the sensor at a slower rate
- This enables very high speed buffered bursts
- High speed rolling shutter readout can greatly reduce rolling shutter distortion

Advanced on-sensor functions

- Building on the stacked CMOS technology, Sony have demonstrated a sensor with separate sensing and output streams
- On-sensor image processing can do basic object detection and motion vector at 1000fps
- Low speed VGA output stream for monitoring

What is next in CMOS Sensor Technology?

- On-Sensor Polarization
- Curved CMOS Sensors
- QuantumFilm™
- Stacked CMOS Sensors
- Organic Photoconductive Film sensors
- 3rd Generation Sony Pregius

Quantum Dots

- QuantumFilmTM is based on quantum dot technology
- Can be tuned to wavelength by changing the size of the quantum dots
- The current version of this sensor uses a film sensitive to visible light covered by color filters in a Bayer pattern

Quantum Film

- Bayer pattern enables the use of existing color processing pipelines
- Sampling a 13 MP 1.1µm color sensor in 2015
- Targeted at the mobile phone industry, but no adoption
- In late 2016 InVisage started promoting a 13MP, 1.1µm NIR sensor for use with IR structured light
- Acquired by Apple in November 2017

What is next in CMOS Sensor Technology?

- On-Sensor Polarization
- Curved CMOS Sensors
- QuantumFilm™
- Stacked CMOS Sensors
- Organic Photoconductive Film sensors
- 3rd Generation Sony Pregius

Organic Photoconductive Film Sensors

- Sensor technology developed by Panasonic
- Novel pixel structure replaces silicon photodiode with photoconductive film
- Sensitivity is dependent on voltage applied to photoconductive film

Advantages of OPF sensors

- Greater fill factor relative to traditional CMOS enables higher resolutions in smaller sensor sizes
- Varying the voltage applied to the OPF can act as an ND filter enabling a high saturation mode
- Global shutter can be realized by switching the sensitivity to zero at the end of the exposure across the entire array

High Saturation Mode Off

High Saturation Mode On

What is next in CMOS Sensor Technology?

- On-Sensor Polarization
- Curved CMOS Sensors
- QuantumFilm™
- Stacked CMOS Sensors
- Organic Photoconductive Film sensors
- 3rd Generation Sony Pregius

Third generation Sony Pregius

- Sony's third generation of high-performance global shutter machine vision image sensors introduces exciting new features
- Maintains the low read noise characteristic of Pregius sensors
- Improved dynamic range 79dB
- Transition from LVDS to SLVS-EC interface delivers 18 Gbit/sec throughput

Self Trigger Mode

- A region of interest can be defined as a sensing zone
- The sensing zone can automatically trigger image acquisition in the capture zone
- Simplify systems by eliminating the need for external triggering

Dual trigger mode

- Capture two regions of interest at different exposure times with a single trigger input
- Eliminate the need for multi-exposure HDR imaging

New Pixel Size

- 3rd generation Pregius introduces a 4.5µm pixel
- Intermediate pixel size between 1st generation 5.86μm and 2nd Generation 3.45μm
- The fist sensor in this line will the be 7.1 MP, 1" IMX420
- Greater saturation capacity than 2nd generation Pregius sensors
- Greater resolution than 1st generation Pregius sensors